Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38635834

RESUMO

BACKGROUND: The anti-IgE monoclonal, omalizumab, is widely used for severe asthma. This study aimed to identify biomarkers that predict clinical improvement during one year of omalizumab treatment. METHODS: 1-year, open-label, Study of Mechanisms of action of Omalizumab in Severe Asthma (SoMOSA) involving 216 severe (GINA step 4/5) uncontrolled atopic asthmatics (≥2 severe exacerbations in previous year) on high-dose inhaled corticosteroids, long-acting ß-agonists, ± mOCS. It had two phases: 0-16 weeks, to assess early clinical improvement by Global Evaluation of Therapeutic Effectiveness (GETE), and 16-52 weeks, to assess late responses by ≥50% reduction in exacerbations or dose of maintenance oral corticosteroids (mOCS). All participants provided samples (exhaled breath, blood, sputum, urine) before and after 16 weeks of omalizumab treatment. RESULTS: 191 patients completed phase 1; 63% had early improvement. Of 173 who completed phase 2, 69% had reduced exacerbations by ≥50%, while 57% (37/65) on mOCS reduced their dose by ≥50%. The primary outcome 2, 3-dinor-11-ß-PGF2α, GETE and standard clinical biomarkers (blood and sputum eosinophils, exhaled nitric oxide, serum IgE) did not predict either clinical response. Five breathomics (GC-MS) and 5 plasma lipid biomarkers strongly predicted the ≥50% reduction in exacerbations (receiver operating characteristic area under the curve (AUC): 0.780 and 0.922, respectively) and early responses (AUC:0.835 and 0.949, respectively). In independent cohorts, the GC-MS biomarkers differentiated between severe and mild asthma. Conclusions This is the first discovery of omics biomarkers that predict improvement to a biologic for asthma. Their prospective validation and development for clinical use is justified.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38648186

RESUMO

RATIONALE: Early identification of children with poorly controlled asthma is imperative for optimizing treatment strategies. The analysis of exhaled volatile organic compounds (VOCs) is an emerging approach to identify prognostic and diagnostic biomarkers in pediatric asthma. OBJECTIVES: To assess the accuracy of gas chromatography-mass spectrometry based exhaled metabolite analysis to differentiate between controlled and uncontrolled pediatric asthma. METHODS: This study encompassed a discovery (SysPharmPediA) and validation phase (U-BIOPRED, PANDA). Firstly, exhaled VOCs that discriminated asthma control levels were identified. Subsequently, outcomes were validated in two independent cohorts. Patients were classified as controlled or uncontrolled, based on asthma control test scores and number of severe attacks in the past year. Additionally, potential of VOCs in predicting two or more future severe asthma attacks in SysPharmPediA was evaluated. MEASUREMENTS AND MAIN RESULTS: Complete data were available for 196 children (SysPharmPediA=100, U-BIOPRED=49, PANDA=47). In SysPharmPediA, after randomly splitting the population into training (n=51) and test sets (n=49), three compounds (acetophenone, ethylbenzene, and styrene) distinguished between uncontrolled and controlled asthmatics. The area under the receiver operating characteristic curve (AUROCC) for training and test sets were respectively: 0.83 (95% CI: 0.65-1.00) and 0.77 (95% CI: 0.58-0.96). Combinations of these VOCs resulted in AUROCCs of 0.74 ±0.06 (UBIOPRED) and 0.68 ±0.05 (PANDA). Attacks prediction tests, resulted in AUROCCs of 0.71 (95% CI 0.51-0.91) and 0.71 (95% CI 0.52-0.90) for training and test sets. CONCLUSIONS: Exhaled metabolites analysis might enable asthma control classification in children. This should stimulate further development of exhaled metabolites-based point-of-care tests in asthma.

3.
Crit Care ; 28(1): 96, 2024 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521944

RESUMO

BACKGROUND: Acute respiratory distress syndrome (ARDS) poses challenges in early identification. Exhaled breath contains metabolites reflective of pulmonary inflammation. AIM: To evaluate the diagnostic accuracy of breath metabolites for ARDS in invasively ventilated intensive care unit (ICU) patients. METHODS: This two-center observational study included critically ill patients receiving invasive ventilation. Gas chromatography and mass spectrometry (GC-MS) was used to quantify the exhaled metabolites. The Berlin definition of ARDS was assessed by three experts to categorize all patients into "certain ARDS", "certain no ARDS" and "uncertain ARDS" groups. The patients with "certain" labels from one hospital formed the derivation cohort used to train a classifier built based on the five most significant breath metabolites. The diagnostic accuracy of the classifier was assessed in all patients from the second hospital and combined with the lung injury prediction score (LIPS). RESULTS: A total of 499 patients were included in this study. Three hundred fifty-seven patients were included in the derivation cohort (60 with certain ARDS; 17%), and 142 patients in the validation cohort (47 with certain ARDS; 33%). The metabolites 1-methylpyrrole, 1,3,5-trifluorobenzene, methoxyacetic acid, 2-methylfuran and 2-methyl-1-propanol were included in the classifier. The classifier had an area under the receiver operating characteristics curve (AUROCC) of 0.71 (CI 0.63-0.78) in the derivation cohort and 0.63 (CI 0.52-0.74) in the validation cohort. Combining the breath test with the LIPS does not significantly enhance the diagnostic performance. CONCLUSION: An exhaled breath metabolomics-based classifier has moderate diagnostic accuracy for ARDS but was not sufficiently accurate for clinical use, even after combination with a clinical prediction score.


Assuntos
Lesão Pulmonar , Pneumonia , Síndrome do Desconforto Respiratório , Humanos , Cuidados Críticos , Pulmão , Síndrome do Desconforto Respiratório/diagnóstico
4.
Respir Med ; 225: 107583, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38447787

RESUMO

BACKGROUND: Bronchial thermoplasty (BT) is a bronchoscopic treatment for severe asthma. Although multiple trials have demonstrated clinical improvement after BT, optimal patient selection remains a challenge and the mechanism of action is incompletely understood. The aim of this study was to examine whether exhaled breath analysis can contribute to discriminate between BT-responders and non-responders at baseline and to explore pathophysiological insights of BT. METHODS: Exhaled breath was collected from patients at baseline and six months post-BT. Patients were defined as responders or non-responders based on a half point increase in asthma quality of life questionnaire scores. Gas chromatography-mass spectrometry was used for volatile organic compounds (VOCs) detection and analyses. Analytical workflow consisted of: 1) detection of VOCs that differentiate between responders and non-responders and those that differ between baseline and six months post-BT, 2) identification of VOCs of interest and 3) explore correlations between clinical biomarkers and VOCs. RESULTS: Data was available from 14 patients. Nonanal, 2-ethylhexanol and 3-thujol showed a significant difference in intensity between responders and non-responders at baseline (p = 0.04, p = 0.01 and p = 0.03, respectively). After BT, no difference was found in the compound intensity of these VOCs. A negative correlation was observed between nonanal and IgE and BALF eosinophils (r = -0.68, p < 0.01 and r = -0.61, p = 0.02 respectively) and 3-thujol with BALF neutrophils (r = -0.54, p = 0.04). CONCLUSIONS: This explorative study identified discriminative VOCs in exhaled breath between BT responders and non-responders at baseline. Additionally, correlations were found between VOC's and inflammatory BALF cells. Once validated, these findings encourage research in breath analysis as a non-invasive easy to apply technique for identifying airway inflammatory profiles and eligibility for BT or immunotherapies in severe asthma.


Assuntos
Aldeídos , Asma , Monoterpenos Bicíclicos , Termoplastia Brônquica , Compostos Orgânicos Voláteis , Humanos , Termoplastia Brônquica/métodos , Qualidade de Vida , Compostos Orgânicos Voláteis/análise
5.
Intensive Care Med Exp ; 12(1): 14, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38345723

RESUMO

BACKGROUND: Exhaled volatile organic compounds (VOCs), particularly hydrocarbons from oxidative stress-induced lipid peroxidation, are associated with hyperoxia exposure. However, important heterogeneity amongst identified VOCs and concerns about their precise pathophysiological origins warrant translational studies assessing their validity as a marker of hyperoxia-induced oxidative stress. Therefore, this study sought to examine changes in VOCs previously associated with the oxidative stress response in hyperoxia-exposed lung epithelial cells. METHODS: A549 alveolar epithelial cells were exposed to hyperoxia for 24 h, or to room air as normoxia controls, or hydrogen peroxide as oxidative-stress positive controls. VOCs were sampled from the headspace, analysed by gas chromatography coupled with mass spectrometry and compared by targeted and untargeted analyses. A secondary analysis of breath samples from a large cohort of critically ill adult patients assessed the association of identified VOCs with clinical oxygen exposure. RESULTS: Following cellular hyperoxia exposure, none of the targeted VOCs, previously proposed as breath markers of oxidative stress, were increased, and decane was significantly decreased. Untargeted analysis did not reveal novel identifiable hyperoxia-associated VOCs. Within the clinical cohort, three previously proposed breath markers of oxidative stress, hexane, octane, and decane had no real diagnostic value in discriminating patients exposed to hyperoxia. CONCLUSIONS: Hyperoxia exposure of alveolar epithelial cells did not result in an increase in identifiable VOCs, whilst VOCs previously linked to oxidative stress were not associated with oxygen exposure in a cohort of critically ill patients. These findings suggest that the pathophysiological origin of previously proposed breath markers of oxidative stress is more complex than just oxidative stress from hyperoxia at the lung epithelial cellular level.

6.
Artigo em Inglês | MEDLINE | ID: mdl-38315815

RESUMO

Severe viral lower respiratory tract infection (LRTI), resulting in both acute and long-term pulmonary disease, constitutes a substantial burden among young children. Viral LRTI triggers local oxidative stress pathways by infection and inflammation, and supportive care in the pediatric intensive care unit may further aggravate oxidative injury. The main goal of this exploratory study was to identify and monitor breath markers linked to oxidative stress in children over the disease course of severe viral LRTI. Exhaled breath was sampled during invasive ventilation and volatile organic compounds (VOCs) were analyzed using gas-chromatography and mass-spectrometry. VOCs were selected in an untargeted principal component analysis and assessed for change over time. Additionally, identified VOCs were correlated with clinical parameters. Seventy breath samples from 21 patients were analyzed. A total of 15 VOCs were identified that contributed the most to the explained variance of breath markers. Of these 15 VOCs, 10 were previously linked to pathways of oxidative stress. Eight VOCs, including seven alkanes and methyl alkanes, significantly decreased from the initial phase of ventilation to the day of extubation. No correlation was observed with the administered oxygen dose, while 6 VOCs showed a poor-to-strong positive correlation with driving pressure. In this prospective study of children with severe viral LRTI, the majority of VOCs that were most important for the explained variance mirrored clinical improvement. These breath markers could potentially help monitor the pulmonary oxidative status in these patients, but further research with other objective measures of pulmonary injury is required.

7.
Diving Hyperb Med ; 53(4): 340-344, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38091594

RESUMO

Pulmonary oxygen toxicity (POT), an adverse reaction to an elevated partial pressure of oxygen in the lungs, can develop as a result of prolonged hyperbaric hyperoxic conditions. Initially starting with tracheal discomfort, it results in pulmonary symptoms and ultimately lung fibrosis. Previous studies identified several volatile organic compounds (VOCs) in exhaled breath indicative of POT after various wet and dry hyperbaric hypoxic exposures, predominantly in laboratory settings. This study examined VOCs after exposures to 81 metres of seawater by three navy divers during operational heliox diving. Univariate testing did not yield significant results. However, targeted multivariate analysis of POT-associated VOCs identified significant (P = 0.004) changes of dodecane, tetradecane, octane, methylcyclohexane, and butyl acetate during the 4 h post-dive sampling period. No airway symptoms or discomfort were reported. This study demonstrates that breath sampling can be performed in the field, and VOCs indicative of oxygen toxicity are exhaled without clinical symptoms of POT, strengthening the belief that POT develops on a subclinical-to-symptomatic spectrum. However, this study was performed during an actual diving operation and therefore various confounders were introduced, which were excluded in previous laboratory studies. Future studies could focus on optimising sampling protocols for field use to ensure uniformity and reproducibility, and on establishing dose-response relationships.


Assuntos
Mergulho , Hiperóxia , Humanos , Mergulho/efeitos adversos , Mergulho/fisiologia , Reprodutibilidade dos Testes , Oxigênio/efeitos adversos , Hélio , Hiperóxia/induzido quimicamente
8.
ERJ Open Res ; 9(5)2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37850212

RESUMO

Background: The concentration of exhaled octane has been postulated as a reliable biomarker for acute respiratory distress syndrome (ARDS) using metabolomics analysis with gas chromatography and mass spectrometry (GC-MS). A point-of-care (POC) breath test was developed in recent years to accurately measure octane at the bedside. The aim of the present study was to validate the diagnostic accuracy of exhaled octane for ARDS using a POC breath test in invasively ventilated intensive care unit (ICU) patients. Methods: This was an observational cohort study of consecutive patients receiving invasive ventilation for at least 24 h, recruited in two university ICUs. GC-MS and POC breath tests were used to quantify the exhaled octane concentration. ARDS was assessed by three experts following the Berlin definition and used as the reference standard. The area under the receiver operating characteristic curve (AUC) was used to assess diagnostic accuracy. Results: 519 patients were included and 190 (37%) fulfilled the criteria for ARDS. The median (interquartile range) concentration of octane using the POC breath test was not significantly different between patients with ARDS (0.14 (0.05-0.37) ppb) and without ARDS (0.11 (0.06-0.26) ppb; p=0.64). The AUC for ARDS based on the octane concentration in exhaled breath using the POC breath test was 0.52 (95% CI 0.46-0.57). Analysis of exhaled octane with GC-MS showed similar results. Conclusions: Octane in exhaled breath has insufficient diagnostic accuracy for ARDS. This disqualifies the use of octane as a biomarker in the diagnosis of ARDS and challenges most of the research performed up to now in the field of exhaled breath metabolomics.

9.
ERJ Open Res ; 9(4)2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37650089

RESUMO

Background: Asthma and COPD are among the most common respiratory diseases. To improve the early detection of exacerbations and the clinical course of asthma and COPD new biomarkers are needed. The development of noninvasive metabolomics of exhaled air into a point-of-care tool is an appealing option. However, risk factors for obstructive pulmonary diseases can potentially introduce confounding markers due to altered volatile organic compound (VOC) patterns being linked to these risk factors instead of the disease. We conducted a systematic review and presented a comprehensive list of VOCs associated with these risk factors. Methods: A PRISMA-oriented systematic search was conducted across PubMed, Embase and Cochrane Libraries between 2000 and 2022. Full-length studies evaluating VOCs in exhaled breath were included. A narrative synthesis of the data was conducted, and the Newcastle-Ottawa Scale was used to assess the quality of included studies. Results: The search yielded 2209 records and, based on the inclusion/exclusion criteria, 24 articles were included in the qualitative synthesis. In total, 232 individual VOCs associated with risk factors for obstructive pulmonary diseases were found; 58 compounds were reported more than once and 12 were reported as potential markers of asthma and/or COPD in other studies. Critical appraisal found that the identified studies were methodologically heterogeneous and had a variable risk of bias. Conclusion: We identified a series of exhaled VOCs associated with risk factors for asthma and/or COPD. Identification of these VOCs is necessary for the further development of exhaled metabolites-based point-of-care tests in these obstructive pulmonary diseases.

10.
EBioMedicine ; 94: 104729, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37506544

RESUMO

BACKGROUND: Post-acute sequela of SARS-CoV-2 infection (PASC) encompass fatigue, post-exertional malaise and cognitive problems. The abundant expression of the tryptophan-catabolizing enzyme indoleamine 2,3-dioxygenase-2 (IDO2) in fatal/severe COVID-19, led us to determine, in an exploratory observational study, whether IDO2 is expressed and active in PASC, and may correlate with pathophysiology. METHODS: Plasma or serum, and peripheral blood mononuclear cells (PBMC) were obtained from well-characterized PASC patients and SARS-CoV-2-infected individuals without PASC. We assessed tryptophan and its degradation products by UPLC-MS/MS. IDO2 activity, its potential consequences, and the involvement of the aryl hydrocarbon receptor (AHR) in IDO2 expression were determined in PBMC from another PASC cohort by immunohistochemistry (IHC) for IDO2, IDO1, AHR, kynurenine metabolites, autophagy, and apoptosis. These PBMC were also analyzed by metabolomics and for mitochondrial functioning by respirometry. IHC was also performed on autopsy brain material from two PASC patients. FINDINGS: IDO2 is expressed and active in PBMC from PASC patients, as well as in brain tissue, long after SARS-CoV-2 infection. This is paralleled by autophagy, and in blood cells by reduced mitochondrial functioning, reduced intracellular levels of amino acids and Krebs cycle-related compounds. IDO2 expression and activity is triggered by SARS-CoV-2-infection, but the severity of SARS-CoV-2-induced pathology appears related to the generated specific kynurenine metabolites. Ex vivo, IDO2 expression and autophagy can be halted by an AHR antagonist. INTERPRETATION: SARS-CoV-2 infection triggers long-lasting IDO2 expression, which can be halted by an AHR antagonist. The specific kynurenine catabolites may relate to SARS-CoV-2-induced symptoms and pathology. FUNDING: None.


Assuntos
COVID-19 , Triptofano , Humanos , Cromatografia Líquida , COVID-19/complicações , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Cinurenina , Leucócitos Mononucleares/metabolismo , Síndrome Pós-COVID-19 Aguda , SARS-CoV-2/metabolismo , Espectrometria de Massas em Tandem , Triptofano/metabolismo
11.
Am J Respir Crit Care Med ; 208(2): 142-154, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37163754

RESUMO

Rationale: Children with preschool wheezing or school-age asthma are reported to have airway microbial imbalances. Objectives: To identify clusters in children with asthma or wheezing using oropharyngeal microbiota profiles. Methods: Oropharyngeal swabs from the U-BIOPRED (Unbiased Biomarkers for the Prediction of Respiratory Disease Outcomes) pediatric asthma or wheezing cohort were characterized using 16S ribosomal RNA gene sequencing, and unsupervised hierarchical clustering was performed on the Bray-Curtis ß-diversity. Enrichment scores of the Molecular Signatures Database hallmark gene sets were computed from the blood transcriptome using gene set variation analysis. Children with severe asthma or severe wheezing were followed up for 12-18 months, with assessment of the frequency of exacerbations. Measurements and Main Results: Oropharyngeal samples from 241 children (age range, 1-17 years; 40% female) revealed four taxa-driven clusters dominated by Streptococcus, Veillonella, Rothia, and Haemophilus. The clusters showed significant differences in atopic dermatitis, grass pollen sensitization, FEV1% predicted after salbutamol, and annual asthma exacerbation frequency during follow-up. The Veillonella cluster was the most allergic and included the highest percentage of children with two or more exacerbations per year during follow-up. The oropharyngeal clusters were different in the enrichment scores of TGF-ß (transforming growth factor-ß) (highest in the Veillonella cluster) and Wnt/ß-catenin signaling (highest in the Haemophilus cluster) transcriptomic pathways in blood (all q values <0.05). Conclusions: Analysis of the oropharyngeal microbiota of children with asthma or wheezing identified four clusters with distinct clinical characteristics (phenotypes) that associate with risk for exacerbation and transcriptomic pathways involved in airway remodeling. This suggests that further exploration of the oropharyngeal microbiota may lead to novel pathophysiologic insights and potentially new treatment approaches.


Assuntos
Asma , Hipersensibilidade , Microbiota , Feminino , Masculino , Humanos , Transcriptoma , Sons Respiratórios/genética , Asma/genética , Microbiota/genética
12.
Front Mol Biosci ; 10: 1160106, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37179567

RESUMO

Volatile organic compounds (VOCs) found in exhaled breath continue to garner interest as an alternative diagnostic tool in pulmonary infections yet, their clinical integration remains a challenge with difficulties in translating identified biomarkers. Alterations in bacterial metabolism secondary to host nutritional availability may explain this but is often inadequately modelled in vitro. The influence of more clinically relevant nutrients on VOC production for two common respiratory pathogens was investigated. VOCs from Staphylococcus aureus (S.aureus) and Pseudomonas aeruginosa (P.aeruginosa) cultured with and without human alveolar A549 epithelial cells were analyzed using headspace extraction coupled with gas chromatography-mass spectrometry. Untargeted and targeted analyses were performed, volatile molecules identified from published data, and the differences in VOC production evaluated. Principal component analysis (PCA) could differentiate alveolar cells from either S. aureus or P. aeruginosa when cultured in isolation based on PC1 (p = 0.0017 and 0.0498, respectively). However, this separation was lost for S. aureus (p = 0.31) but not for P. aeruginosa (p = 0.028) when they were cultured with alveolar cells. S. aureus cultured with alveolar cells led to higher concentrations of two candidate biomarkers, 3-methyl-1-butanol (p = 0.001) and 3-methylbutanal (p = 0.002) when compared to S. aureus, alone. P. aeruginosa metabolism resulted in less generation of pathogen-associated VOCs when co-cultured with alveolar cells compared to culturing in isolation. VOC biomarkers previously considered indicative of bacterial presence are influenced by the local nutritional environment and this should be considered when evaluating their biochemical origin.

13.
Metabolites ; 13(3)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36984755

RESUMO

The COMEX-30 hyperbaric treatment table is used to manage decompression sickness in divers but may result in pulmonary oxygen toxicity (POT). Volatile organic compounds (VOCs) in exhaled breath are early markers of hyperoxic stress that may be linked to POT. The present study assessed whether VOCs following COMEX-30 treatment are early markers of hyperoxic stress and/or POT in ten healthy, nonsmoking volunteers. Because more oxygen is inhaled during COMEX-30 treatment than with other treatment tables, this study hypothesized that VOCs exhaled following COMEX-30 treatment are indicators of POT. Breath samples were collected before and 0.5, 2, and 4 h after COMEX-30 treatment. All subjects were followed-up for signs of POT or other symptoms. Nine compounds were identified, with four (nonanal, decanal, ethyl acetate, and tridecane) increasing 33-500% in intensity from before to after COMEX-30 treatment. Seven subjects reported pulmonary symptoms, five reported out-of-proportion tiredness and transient ear fullness, and four had signs of mild dehydration. All VOCs identified following COMEX-30 treatment have been associated with inflammatory responses or pulmonary diseases, such as asthma or lung cancer. Because most subjects reported transient pulmonary symptoms reflecting early-stage POT, the identified VOCs are likely markers of POT, not just hyperbaric hyperoxic exposure.

14.
ERJ Open Res ; 9(2)2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36949963

RESUMO

Background: Changes in exhaled volatile organic compounds (VOCs) can be used to discriminate between respiratory diseases, and increased concentrations of hydrocarbons are commonly linked to oxidative stress. However, the VOCs identified are inconsistent between studies, and translational studies are lacking. Methods: In this bench to bedside study, we captured VOCs in the headspace of A549 epithelial cells after exposure to hydrogen peroxide (H2O2), to induce oxidative stress, using high-capacity polydimethylsiloxane sorbent fibres. Exposed and unexposed cells were compared using targeted and untargeted analysis. Breath samples of invasively ventilated intensive care unit patients (n=489) were collected on sorbent tubes and associated with the inspiratory oxygen fraction (F IO2 ) to reflect pulmonary oxidative stress. Headspace samples and breath samples were analysed using gas chromatography and mass spectrometry. Results: In the cell, headspace octane concentration was decreased after oxidative stress (p=0.0013), while the other VOCs were not affected. 2-ethyl-1-hexanol showed an increased concentration in the headspace of cells undergoing oxidative stress in untargeted analysis (p=0.00014). None of the VOCs that were linked to oxidative stress showed a significant correlation with F IO2 (Rs range: -0.015 to -0.065) or discriminated between patients with F IO2 ≥0.6 or below (area under the curve range: 0.48 to 0.55). Conclusion: Despite a comprehensive translational approach, validation of known and novel volatile biomarkers of oxidative stress was not possible in patients at risk of pulmonary oxidative injury. The inconsistencies observed highlight the difficulties faced in VOC biomarker validation, and that caution is warranted in the interpretation of the pathophysiological origin of discovered exhaled breath biomarkers.

15.
J Pediatr ; 257: 113368, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36868304

RESUMO

OBJECTIVE(S): To investigate the predictive performances of exhaled breath volatile organic compounds (VOCs) for development of bronchopulmonary dysplasia (BPD) in infants born preterm. METHODS: Exhaled breath was collected from infants born <30 weeks' gestation at days 3 and 7 of life. Ion fragments detected by gas chromatography-mass spectrometry analysis were used to derive and internally validate a VOC prediction model for moderate or severe BPD at 36 weeks of postmenstrual age. We tested the predictive performance of the National Institute of Child Health and Human Development (NICHD) clinical BPD prediction model with and without VOCs. RESULTS: Breath samples were collected from 117 infants (mean gestation 26.8 ± 1.5 weeks). Thirty-three percent of the infants developed moderate or severe BPD. The VOC model showed a c-statistic of 0.89 (95% CI 0.80-0.97) and 0.92 (95% CI 0.84-0.99) for the prediction of BPD at days 3 and 7, respectively. Adding the VOCs to the clinical prediction model in noninvasively supported infants resulted in significant improvement in discriminative power on both days (day 3: c-statistic 0.83 vs 0.92, P value .04; day 7: c-statistic 0.82 vs 0.94, P value .03). CONCLUSIONS: This study showed that VOC profiles in exhaled breath of preterm infants on noninvasive support in the first week of life differ between those developing and not developing BPD. Adding VOCs to a clinical prediction model significantly improved its discriminative performance.


Assuntos
Displasia Broncopulmonar , Compostos Orgânicos Voláteis , Criança , Recém-Nascido , Lactente , Humanos , Displasia Broncopulmonar/diagnóstico , Recém-Nascido Prematuro , Modelos Estatísticos , Prognóstico , Idade Gestacional
16.
Clin Infect Dis ; 76(6): 1059-1066, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36310531

RESUMO

BACKGROUND: Early and accurate recognition of respiratory pathogens is crucial to prevent increased risk of mortality in critically ill patients. Microbial-derived volatile organic compounds (mVOCs) in exhaled breath could be used as noninvasive biomarkers of infection to support clinical diagnosis. METHODS: In this study, we investigated the diagnostic potential of in vitro-confirmed mVOCs in the exhaled breath of patients under mechanical ventilation from the BreathDx study. Samples were analyzed by thermal desorption-gas chromatography-mass spectrometry. RESULTS: Pathogens from bronchoalveolar lavage (BAL) cultures were identified in 45 of 89 patients and Staphylococcus aureus was the most commonly identified pathogen (n = 15). Of 19 mVOCs detected in the in vitro culture headspace of 4 common respiratory pathogens (S. aureus, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Escherichia coli), 14 were found in exhaled breath samples. Higher concentrations of 2 mVOCs were found in the exhaled breath of patients infected with S. aureus compared to those without (3-methylbutanal: P < .01, area under the receiver operating characteristic curve [AUROC] = 0.81-0.87; and 3-methylbutanoic acid: P = .01, AUROC = 0.79-0.80). In addition, bacteria identified from BAL cultures that are known to metabolize tryptophan (E. coli, Klebsiella oxytoca, and Haemophilus influenzae) were grouped and found to produce higher concentrations of indole compared to breath samples with culture-negative (P = .034) and other pathogen-positive (P = .049) samples. CONCLUSIONS: This study demonstrates the capability of using mVOCs to detect the presence of specific pathogen groups with potential to support clinical diagnosis. Although not all mVOCs were found in patient samples within this small pilot study, further targeted and qualitative investigation is warranted using multicenter clinical studies.


Assuntos
Pneumonia , Infecções Estafilocócicas , Compostos Orgânicos Voláteis , Humanos , Respiração Artificial , Staphylococcus aureus , Escherichia coli , Projetos Piloto , Pulmão , Bactérias , Infecções Estafilocócicas/diagnóstico , Compostos Orgânicos Voláteis/análise , Biomarcadores/análise
17.
Pharmacol Res Perspect ; 10(6): e01015, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36440690

RESUMO

Elexacaftor/tezacaftor/ivacaftor (ETI) is a cystic fibrosis (CF) transmembrane conductance regulator modulator, which has shown efficacy in CF patients (≥6 years) with ≥1 Phe508del mutation and a minimal function mutation. In October 2019, ETI became available on compassionate use basis for Dutch CF patients with severe lung disease. Our objective was to investigate safety and efficacy of ETI in this patient group in a real-life setting. A multicenter longitudinal observational study was conducted to examine changes in FEV1 , BMI, and adverse events at initiation and 1, 3, 6, and 12 months after starting ETI. The number of exacerbations was recorded in the 12 months before and the 12 months after ETI treatment. Patients eligible for compassionate use had a FEV1 <40% predicted. Wilcoxon signed-rank test analyzed changes over time. Twenty subjects were included and followed up for up to 12 months after starting ETI. Treatment was well tolerated with mild side effects reported, namely, rash (15%) and stomach ache (20%) with 80% resolving within 1 month. Mean absolute increase of FEV1 was 11.8/13.7% (p ≤ .001) and BMI was 0.49/1.87 kg/m2 (p < .001-0.02) after 1/12 months, respectively. In comparison to the number of exacerbations pretrial, there was a marked reduction in exacerbations after initiation. Our findings show long-term effects of treatment with ETI in patients with severe CF lung disease in a real-life setting. Treatment with ETI is associated with increased lung function and BMI, less exacerbations, and only mild side effects.


Assuntos
Fibrose Cística , Humanos , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Pirrolidinas/farmacologia , Pirrolidinas/uso terapêutico
18.
Respiration ; 101(11): 1006-1014, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36044868

RESUMO

BACKGROUND: Patients with interstitial lung diseases (ILDs) frequently present with nondiagnostic high-resolution CT (HRCT) scan and bronchoalveolar lavage (BAL) results, resulting in the need for invasive surgical or cryo-lung biopsy that is associated with significant morbidity. Confocal laser endomicroscopy (CLE) and optical coherence tomography (OCT) are high-resolution laser and light-based techniques that provide real-time imaging of the alveolar compartment during bronchoscopy with a different depth and field of view. OBJECTIVES: The aim of the study was to correlate OCT and CLE imaging to HRCT imaging in ILD. METHODS: This is a retrospective case series of 20 ILD patients who underwent alveolar CLE and OCT imaging during a standard bronchoscopy with BAL, followed by a lung biopsy when indicated. CLE and OCT imaging were compared to four main HRCT patterns and histology. The final diagnosis was based on the multidisciplinary discussion diagnosis. RESULTS: Bronchoscopic CLE and OCT imaging were feasible and safe and provided additional high-detailed anatomical information compared to the HRCT. Bronchoscopic real-time CLE was capable of identification of "alveolar cells" (ground glass opacities) and lung fibrosis (increased alveolar elastin fibers). Bronchoscopic real-time OCT allowed for visualization of "patchy fibrotic disease", "honeycombing" (microcysts), and mucosal granulomas in the airways. CONCLUSIONS: Bronchoscopic CLE and OCT of the alveolar compartment is feasible and safe and enables minimally invasive, high-resolution detection of specific ILD features with the potential to improve ILD diagnostics and monitoring and decrease the need for surgical or cryo-lung biopsies.


Assuntos
Doenças Pulmonares Intersticiais , Humanos , Estudos Retrospectivos , Doenças Pulmonares Intersticiais/diagnóstico , Broncoscopia/métodos , Lavagem Broncoalveolar , Biópsia/métodos
19.
Crit Care ; 26(1): 203, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35794610

RESUMO

BACKGROUND: Ventilator-associated pneumonia (VAP) is associated with high morbidity and health care costs, yet diagnosis remains a challenge. Analysis of airway microbiota by amplicon sequencing provides a possible solution, as pneumonia is characterised by a disruption of the microbiome. However, studies evaluating the diagnostic capabilities of microbiome analysis are limited, with a lack of alignment on possible biomarkers. Using bronchoalveolar lavage fluid (BALF) from ventilated adult patients suspected of VAP, we aimed to explore how key characteristics of the microbiome differ between patients with positive and negative BALF cultures and whether any differences could have a clinically relevant role. METHODS: BALF from patients suspected of VAP was analysed using 16s rRNA sequencing in order to: (1) differentiate between patients with and without a positive culture; (2) determine if there was any association between microbiome diversity and local inflammatory response; and (3) correctly identify pathogens detected by conventional culture. RESULTS: Thirty-seven of 90 ICU patients with suspected VAP had positive cultures. Patients with a positive culture had significant microbiome dysbiosis with reduced alpha diversity. However, gross compositional variance was not strongly associated with culture positivity (AUROCC range 0.66-0.71). Patients with a positive culture had a significantly higher relative abundance of pathogenic bacteria compared to those without [0.45 (IQR 0.10-0.84), 0.02 (IQR 0.004-0.09), respectively], and an increased interleukin (IL)-1ß was associated with reduced species evenness (rs = - 0.33, p < 0.01) and increased pathogenic bacteria presence (rs = 0.28, p = 0.013). Untargeted 16s rRNA pathogen detection was limited by false positives, while the use of pathogen-specific relative abundance thresholds showed better diagnostic accuracy (AUROCC range 0.89-0.998). CONCLUSION: Patients with positive BALF culture had increased dysbiosis and genus dominance. An increased caspase-1-dependent IL-1b expression was associated with a reduced species evenness and increased pathogenic bacterial presence, providing a possible causal link between microbiome dysbiosis and lung injury development in VAP. However, measures of diversity were an unreliable predictor of culture positivity and 16s sequencing used agnostically could not usefully identify pathogens; this could be overcome if pathogen-specific relative abundance thresholds are used.


Assuntos
Pulmão , Microbiota , Pneumonia Associada à Ventilação Mecânica , Adulto , Bactérias , Disbiose , Humanos , Pulmão/microbiologia , Pneumonia Associada à Ventilação Mecânica/diagnóstico , Pneumonia Associada à Ventilação Mecânica/microbiologia , RNA Ribossômico 16S/genética
20.
Pediatr Allergy Immunol ; 33(6): e13802, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35754128

RESUMO

BACKGROUND: Asthma exacerbations are a serious public health concern due to high healthcare resource utilization, work/school productivity loss, impact on quality of life, and risk of mortality. The genetic basis of asthma exacerbations has been studied in several populations, but no prior study has performed a multi-ancestry meta-analysis of genome-wide association studies (meta-GWAS) for this trait. We aimed to identify common genetic loci associated with asthma exacerbations across diverse populations and to assess their functional role in regulating DNA methylation and gene expression. METHODS: A meta-GWAS of asthma exacerbations in 4989 Europeans, 2181 Hispanics/Latinos, 1250 Singaporean Chinese, and 972 African Americans analyzed 9.6 million genetic variants. Suggestively associated variants (p ≤ 5 × 10-5 ) were assessed for replication in 36,477 European and 1078 non-European asthma patients. Functional effects on DNA methylation were assessed in 595 Hispanic/Latino and African American asthma patients and in publicly available databases. The effect on gene expression was evaluated in silico. RESULTS: One hundred and twenty-six independent variants were suggestively associated with asthma exacerbations in the discovery phase. Two variants independently replicated: rs12091010 located at vascular cell adhesion molecule-1/exostosin like glycosyltransferase-2 (VCAM1/EXTL2) (discovery: odds ratio (ORT allele ) = 0.82, p = 9.05 × 10-6 and replication: ORT allele  = 0.89, p = 5.35 × 10-3 ) and rs943126 from pantothenate kinase 1 (PANK1) (discovery: ORC allele  = 0.85, p = 3.10 × 10-5 and replication: ORC allele  = 0.89, p = 1.30 × 10-2 ). Both variants regulate gene expression of genes where they locate and DNA methylation levels of nearby genes in whole blood. CONCLUSIONS: This multi-ancestry study revealed novel suggestive regulatory loci for asthma exacerbations located in genomic regions participating in inflammation and host defense.


Assuntos
Asma , Estudo de Associação Genômica Ampla , Asma/genética , Predisposição Genética para Doença , Hispânico ou Latino/genética , Humanos , Polimorfismo de Nucleotídeo Único , Qualidade de Vida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...